


Instruction manual - Contents

Overview .... 4
What you can expect from this manual .... 4

Part I - The World of Chaos .... 5

Random walks and chaotic trajectories ... 5

Chaotic model systems
a) Roessler 'funnel'  .... 6
b) Lorenz 'butterfly' .... 7

Part II - Data Analysis and Modelling .... 9

Data preprocessing .... 9
Detrending the data .... 9
Measuring the entropy .... 11
Chi²-test of independence .... 12
Looking for the right reference time .... 13
Smoothing with averages .... 15

The first dimension of the market model... 18
Information contained in the data series .... 18

Extracting the dynamics - Embedding .... 19
Time delay embedding general introduction  .... 19
Two dimensional time delay embedding of 
DOW JONES data .... 21

a) x,y scatter plot of embedding  .... 22
b) line graph of embedding .... 22
c) examples of different time delays .... 24,25,26

Other embedding variants .... 27

Obtaining the second dimension .... 27
One step or iterated prediction -  discussion .... 28
One step prediction over four time steps .... 28
Provisional second dimension .... 28
Final second dimension .... 29

Two dimensional embedding, non linear, information weighted 
 X,y scatter plot of embedding  .... 30
 Line graph of embedding .... 30

How many dimensions are necessary 31
Suitable choices for third dimensions .... 31

Generating the third dimension .... 31
Line graph of provisional third dimension .... 33
Line graph of final third dimension .... 33

Looking for an optimal model .... 34
Measuring the cross dimension 
mutual information .... 34

2



Estimating the maximum total information .... 34

Choose a prediction method - neural net, 
nearest neighbour 35

Part III - Nearest Neighbour Prediction .... 36

Introduction .... 36

Advantages of nearest neighbour methods 
over neural nets .... 37

How to find optimal nearest neighbours .... 37
Weighting of the reference values .... 37
Choosing a distance measure .... 38
Predictors can have different orders .... 38
Measures of error and prognostic gain .... 39

a) Absolute error measures .... 39
b) Correlation measures .... 39
c) Root of mean squared error measures .. 39

Pros and cons of different measures .... 40
Error distribution .... 41
Improved error estimation .... 41

How to apply the nearest neighbour predictor .... 42
Creating a predictor spreadsheet .... 42
Sorting the data according to distance .... 43
Computing the output (prediction) of 
nearest neighbours .... 43
Sorting the data sets according to 
data set number .... 45
Back calculation of (smoothed) trend values .... 45
Back calculation of (smoothed) index values .... 46
Example prediction .... 46

Summary  .... 48

Brief discussion of chaos theoretical approach 
versus fundamental analysis and 'technical 
analysis' .. 48

Appendix .... 49

Financial time series and their sources .... 49,50
References .... 51
Copyright Notice 51

3



Overview

What you can expect from this manual

Here we will show, how you can make practical use of chaos theory.  Applied to financial markets
it allows to give much better prognoses and consistently so than forecasts based on conventional
linear statistics, like auto regression of moving averages (ARMA), which are the basis of 'technical
analysis'. 

This guide is devided into four parts.  The first part is a very brief introduction into the world of
chaos. We will explain why and how the discovery of deterministic chaos has changed the modern
data analysis procedures, the concepts of modelling dynamic systems, and our attitude towards
long term predictability of events.

The second part will lead you through the whole process of data analysis and modelling using the
tools developed over the years by physicists and mathematicians in the field of chaos research.
However, we will not treat chaotic model systems here, like the logistic equation or the Mackey-
Glass functions. Instead we will apply the theory to real market data. Our working example will be
the Dow Jones Industrial Average. 

The third part is a course in how to establish and use a 'nearest neighbour' predictor, which unlike
many other predictors uses only local information for its predictions. What is meant by local will be
explained more thoroughly below.     

Finally we have a short discussion of the chaos theoretical approach as compared to traditional
methods, like fundamental analysis and 'technical analysis'. We will focus on the main differences
between these three.

There is an appendix which lists the markets for which data are available and the sources for
these data
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Part I  -  THE WORLD OF CHAOS

Random walks and chaotic trajectories

Statistical forecasts rely on probabilities. They are ideal in cases where single future events are
unpredictable  and only probabilities can be given for  the various possible  outcomes.  In  other
words they are ideal for estimating random events. 

For a long time market movements were regarded as random events, and this is still a popular
opinion.  Hence  the  success  of  the  'random  walk'  theory,  which  has  many  followers  among
scholars  of  economics.  This  theory was suggested in  the  nineteen sixties  following statistical
analysis of empirical market data. And the statements of this theory were supported by similar
analyses many times later on. 

Then, what made people change their mind concerning the 'random walk' theory? Basically it was
the discovery of deterministic chaos. 

Physicists and mathematicians recognized that quite simple dynamic systems made up of only
three components could show seemingly unpredictable behaviour: Chaos. And this could occur
although  interrelations between the components were strictly coded in mathematical equations,
which  did  not  involve  any  random  element.  Not  all  coupled  three  component  systems  were
capable of evolving this kind of behaviour. A necessary condition for chaos to appear was that at
least one of the three interrelations was nonlinear. 
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A prominant example of a chaotic system with a single non linear coupling is the Roessler 'funnel',
shown in the figure. Below we give the formulas which describe how the three components of the
system change with time. Note that a,b,c are constant values. Non linearity arises in the third
component from the product of two variables (z*x).
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Better known to the public is the Lorenz 'butterfly', see figure, which is also a three component
system, but has two nonlinear interrelations, one more than the Roessler 'funnel'. Again we give
the formulas below. They describe how the three components of the system change with time.
Note that here b,r and sigma are constant values. Non linearity arises in the second  component
from the product (x*z) of two variables and in the third component from another product of two
variables (x*y).
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Chaotic  time  series  (trajectories)  look  like  random events  not  only  to  the  naked  eye.  Linear
statistical  tests  for  auto  correlation  or  Fourier  analysis  cannot  recognize  differences  between
chaotic and random data and neither can wavelet analysis. This observation indicated that tests of
randomness were not reliable if carried out with these methods. And since these tests have been
applied to a broad range of problems they could probably have misclassified events as random
which really were not.

Fortunately  tests  are  available  which  can  unambiguously  distinguish  ordered  events  from
randomness,  for  example the well known Chi² -  test  of  independence and the somewhat less
known  test  of  conditional  entropy.  Using  these  tests  we  have  investigated  data  from  many
markets and compared them to matched pseudo-random data. While the pseudo-random data
could  not  be  distinguished  from  random  events,  all  the  original  market  data  were  at  least
significantly  (p  >  0.95  %)  different  from  random  events,  most  differences  were  even  highly
significant (p > 99%). These results suggest that the 'random walk' hypothesis should be rejected.
Markets  behave reflexively in  other  words they are self  referential  systems.  But  beware,  their
dynamics are not as simple as practitioners of 'technical analysis' assume.   

If  market  movements  are  not  random events then  there  exist  better  methods  than  ARMA to
forecast  the future development.  But before  we can make  use of  these methods we have to
discover them. This will be dealt with in the next part.
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Part II - DATA ANALYSIS AND MODELLING

In the following we will develop a model of the DOW JONES industrial average as a dynamical
system. The model will be created on the basis of a time series of weekly closes from January
1980 to November 1998. 

In principle the same type of analysis can be carried out with other markets. Of course one must
not blindly take over all parameters found suitable for the DOW JONES index to the modelling of
other markets. But despite of the fact that the individual conditions can be quite different from one
market to another, the methods learned from the DOW JONES example can be applied to any
market. For those who would like to try some experiments with other markets, a disk with data
from various markets will be supplied together with this manual. More information concerning the
data can be found in the appendix. 

Data preprocessing

Detrending the data

The original data series has a strong upward trend. This is shown in the two figures, one of which
uses a linear vertical scale, the other a logarithmic scale. With logarithmic scaling the trend fits
much better to a straight line than with linear scaling. Anyway, the trend must be eliminated first.
One way to achieve this is to build the logarithm of the data and then take the differences from
week to week. Written down as a series of weekly differences of their logarithms the data are
effectively detrended as you can learn from the corresponding figure. Note that we use natural
logarithms (ln) here and not log10.
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Measuring the entropy

There is nothing particular about one week differences. Other (moving) differences between two
or  more  weeks  are  also  possible.  One  can  easily  show  that  the  one,  two  and  three  week
differences for example are distributed differently. The more uniform the distribution the greater
our uncertainty would be to forecast a particular outcome. A measure for this uncertainty is the
entropy. Our uncertainty obviously depends on the precision required. It is much easier to say if
the next move is either up or down, which are two possible outcomes, a one bit decision or to
classify the next  move into one of  four  possible outcomes,  a two bit  decision.  The entropy is
usually given as uncertainty/bit. It can aquire values between 0 and 1. The entropy is minimum
(zero) if one event is certain and all others are impossible. The entropy is maximum (one) if all
events are equally likely. This is true only for uniform distributions. Normally distributed events
have a lower entropy. The entropy usually rises with increasing resolution.  

We have developed a computer program ENTROPRE.EXE that calculates the entropies for the
various differences between one week and fifty two weeks (a year). The program will write the
values as a table on the screen.  You can easily obtain a hard copy with your printer if you give
the  PRINTSCREEN  command.  Usually  there  is  a  key  named  such  on  your  keyboard.  The
program works with the original data and automatically calculates the logarithms and differences.

The  program ENTROPRE.EXE cannot  work  with data in spreadsheet  format,  but  requires  an
ASCII type data file. In order to put the program to work, the data column from the spreadsheet
has to be saved as an ASCII file to a directory that holds the program ENTROPRE.EXE. More
details are given in the user instructions for analysis programs.
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What  can  we learn  from  that  table?  First  of  all  we will  observe  that  there  are  considerable
differences over time. Second we can see that there is no monotonous increase or decrease.
Though there is a tendency to higher values with time there can be islands of somewhat lower
entropy anywhere. Often there are such islands around thirteen weeks difference. For the DOW
there is an island at 12 weeks. So this could be a first rough estimate of a suitable reference time.

We can also analyse the time series with another program, called CHISQUAR.EXE which will
perform  a  Chi²  test  of  independence.  This  test  could  give  us  further  hints  about  a  suitable
reference time. If we use the program to look at log(index) differences for 1 time step as shown in
figure 5, it will show that the individual differences are significantly associated somehow over a
period of ten weeks, which is over in the eleventh week. This is about the same time span as
found above. We will meet the number eleven again later, when we look at the conditional entropy
and mutual information.
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Looking for the right reference time

If we look at the time series of twelve weeks differences of logarithms of indices, 

@LN(B10)-@LN(B22)....@LN(B984)-@LN(bB96)

there  is  much  variation,  which  makes  the  curve  bumpy.  This  variation  can  be  reduced
considerably if we do not compare the actual value to a single value in the past, but to an average
over several weeks. We have observed that seven weeks averages in the past are quite good as
a point to start  from. The optimum may be a somewhat smaller range. This would mean that
instead of calculating the twelve weeks difference we would calculate the difference to an average
taken over the range of nine to fifteen weeks. 

@LN(B10)-@LN(@AVG(B20..B26))...
@LN(B980)-LN(@AVG(B990..B996)).

The values we thus obtain are market trend values for the past quarter. But what is the true trend,
if  the values are moving up and down from one week to the next.  We  have some reason to
assume  that  the  true  trend  would  keep  its  direction.  We  can  approach  the  true  trend  if  we
minimize the changes in direction. An easy way to do this, is smoothing of the data with a simple
four weeks moving average. Other averages are also possible, i.e. exponential, or stepwise linear.
They  are  mentioned  here  only  for  completeness,  but  will  not  be  discussed  any  further.  All
averages named so far would be calculated from complete, not interrupted, series of values and
this causes trouble for prognoses. If we give a four week prognosis of a four weeks average, we
cannot back calculate the individual value from the average. It is impossible, since we do not know
the values of one, two and three weeks ahead. Therefore we have to be content with prognosing
averages. This is no disadvantage if compared to ARMA procedures, because these would also
give  us  averages.  And the  averages  correlate  well  with  the  unsmoothed  trends.  The  highest
correlation is reached with one or two time steps delay at least with simple averages. In principle
we could, back calculate individual values if we computed the averages differently. This does not
make  sense,  however,  with  noisy data like  non smoothed  trends.  We  will  come back  to  this
subject later. 

Smoothing with averages always works, but it means to sacrifice resolution. It  is usually more
rewarding to try out different reference times first, as we will see. 
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We usually count the changes in direction for several reference times. Besides the 10..16 weeks
range  already  mentioned  we  test  8..14,  9..15,  11..17  weeks.  For  this  purpose  we  use  a
spreadsheet formula,  called COUNTCD.WK1 which simply counts changes in  direction.  If  the
provisional optimum is found, further improvements can be expected by narrowing the reference
range say from 10..16 to 11..16 or 10..15 and so on.

If the trend series are in column (C1..C1000), the spreadsheet is copied into cell (D1) next to it on
the right side. 

The formula consists of two columns (D1..E1000). Cell (D1) contains the formula giving the trend
direction:  @if(C1>C2,1,-1)  In words it  means if  the trend increased as compared to the week
before, the output should be one, if not, the output should be minus one. Since identical trends up
to six digits almost never occur, we denote upward moving trends with +1 and downward moving
trends with -1. 

Cell (E1) contains the counting formula @if(D1=D2,E2,E2+1). In words it means that if the trend
direction in cell (D1) has the same sign as the one in cell (D2) the counter should stay as it was
one time step before. If the signs are different, which happens if the trend direction changes, it
should add 1 to the counting sum. The reference time with the least changes is the one of choice.
The next figure shows what it looks like in the spreadsheet.

If  we apply that formula to the 12 weeks differences of the DOW JONES data, we count 521
changes in direction. The difference to a 7 weeks range has considerably less changes 9..15 or
8..14 give 467 changes 7..13 give 479 and 10..16 give 473 changes. So far we cannot decide,
which range is best. This will become clear if we narrow the range. Range 9..14 gives 459 and
8..13 gives 465 changes. Further narrowing yields the optimum at 9..13 with 457 changes. While
range 10..13 gives 461 changes.  Further  narrowing to  9..12 results  in 459 changes,  which is
slightly suboptimal. Therefore range 9..13 is the one of choice. 

Smoothing with moving averages

Though 457 changes in direction were the best we could get so far, the number is still large. We
can lower it considerably, by averaging over neighbouring values. If we use simple linear averages
over  four  weeks,  we make  a  compromise  between smoothing  the  series  and preserving  the
information contained in it. It is not optimal in either sense, but it is easy to use. If we apply a four
weeks average to the 9..13 weeks trend of the DOW we obtain a notably smoothed curve. The
number of changes is reduced to 205, which speaks for itself. The two graphs for the unsmoothed
and smoothed series are given in the next figure.

We would like to know, how close the average is to the true value. The correlation is 0.87 without
delay, but with 1 week delay the correlation is 0.95 which is quite good. It means that the average
will in most cases be closest to the true value not four weeks ahead, but three weeks ahead,
provided our forecast is correct. 
  
The  curve  can  be  smoothed  considerably  by  assigning  different  weights  to  the  factors.  But
smoothing  will  in  many  cases  run  counter  to  information  content.  And  information  loss  will
inevitably deteriorate our forecasts. Optimal or at least close to optimal smoothing factors can be
found using genetic algorithms or other globally optimizing procedures, like simulated annealing
methods. 
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Usually many different combinations of four factors will give rise to the same number of direction
changes.  We  should  take  the  combination  which  preserves  the  maximum of  information.  An
estimate of the relative information preserving capacity of smoothing factors can be obtained by
multiplying the value of  each factor  with its  corresponding  mutual  information,  see below and
adding up the products. The sum of products has to be normalized by deviding through the sum of
factor values. The higher the ratio the more information is preserved. A common observation is
that the second and third factors are nearly equal and higher than the first and fourth, which are
also similar in size. Since the second value contains more information it is better if the second is
the biggest factor. These hints are given for those who do not have access to genetic algorithms
and want to try out some combinations by hand. 

Genetic algorithms or simulated annealing methods will most probably not be available in your
spreadsheet  program.  The  former  can  be  obtained  as  freeware  programs  like  GENESIS  or
EVOLUTION MACHINE through the internet. Both programs require C-compilers, but that is not
the real hurdle.  UNIX systems are all equipped with them and excellent C compilers are available
as public domain for DOS, for example the DJGPP port of the GNU compiler. However, some
knowledge of the C programming language is indispensible, because the function to be optimized
has to be coded by the user.   

To  give  you an  idea  what  genetic  algorithms  can  accomplish  we have  tried  to  minimize  the
changes in  direction  by smoothing  with  a weighted four  weeks moving average.  The  optimal
weights were found with the program GENESIS version 5.0 from John Grefenstette. As written
above many combinations of four factors perform equally well. A collection of which can be found
in the table presented below. While a simple four weeks moving average had 205 changes in
direction,  the optimally  weighted averages had only 167 changes,  which is almost  20% less.
Though the curve of the weighted average is even more smoothed, it correlates better with the
unsmoothed value than the ordinary average. The rank correlation according to Spearman was
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best  with  one  week delay for  both  averages.  For  weighted  averages  it  was rs=0.975  versus
rs=0.971 for ordinary averages. The linear correlation according to Pearson was also best with
one week delay in both cases. Again the weighted average was superior with Rý=0.962 versus
Rý=0.957. Therefore with weighted averages we do not only obtain a smoothed curve by reducing
the noise. We seem to do so selectively because we gain information.

     SUITABLE FACTORS FOR WEIGHTED MOVING AVERAGES

1st week 2nd week 3rd week 4th week
-------- -------- -------- --------

  2905 4835 4777 2925  
   2852 4835 4777 2910
   2852 4924 4831 2925   
    2768 4791 4688 2832   
   2793 4733 4693 2886  
   2783 4835 4826 2950 
   2798 4688 4630 2832
   2768 4733 4625 2832 
   2724 4688 4630 2832 
   2798 4816 4826 2950 
   2901 4973 4924 2989 
   2901 4973 4909 2989
   2901 4973 4924 3048

Each row of the table above gives a suitable combination of weighting factors. The sum of the
products has to be normalized, i.e.  it  must  be divided by the sum of the factors.  An example
carried out  with the underlined factors  is  found in the processing  spreadsheet  on disk.  If  the
factors are normalized (sum of the four factors = 1), the differences between various combinations
become marginal as can be learned from the next figure. It shows line graphs of the normalized
first six rows from the table above. 

How much information is contained in the data series?

Once the  right  reference  time is  chosen,  we have a  time series  of  trend values.  This  series
represents the first dimension of the dynamic system (market) under study and all subsequent
procedures will use it if not stated otherwise. First we have to determine the information content of
the series. We will do this with non parametric tests, because they are distribution independent.
This means their results will be valid not only for normally distributed data, but with data of any
distribution. 

The  first  test  is  Spearman's  rank  correlation  test,  which  is  the  non  parametric  equivalent  of
Pearson's linear correlation test. This test measures monotonous dependency between individual
data of a series. We have coded the procedure into a program named RANKCORR.EXE which
will output a table printed on the screen giving the rank correlation of data which are 1 to 52 time
steps apart, and the corresponding significance of the correlation value. This will give us a good
estimate for the correlation time of the data. We will need it later.  

The second test to perform is the entropy measurement. Again we have coded the procedure into
a program. This program ENTRO32E.EXE classifies the data into 32 classes and determines the
entropy, the conditional entropy and the mutual information of the classified data.  The mutual
information  is  an  even  more  general  measure  of  dependency  between  data  than  the  rank
correlation. It measures any kind of dependency. We will use the mutual information values later.
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Extracting the dynamics by 'embedding'

We want to find the dynamic hidden behind and controlling the market data. This seems at first
sight impossible, if we have only a single time series of market prices available. Certainly there
are more forces driving the market than the actual price alone. Here again we can expect help
from chaos theory. As was already mentioned above, in chaotic systems the components making
up  the  system  are  coupled.  This  has  the  beneficial  effect  that  each  variable  can  deliver
information about the others because of this coupling.

Time delay embedding

The  term  'embedding'  will  be  unfamiliar  to  many  readers.  This  expression  was  coined  by
topologists, mathematicians who study spatial structures and their transformations. An embedding
is  the  specialists  expression  of  an  equivalent  transformation  of  structures,  meaning  that  the
structures in question can be smoothly transformed forth and back without loss of information.

Time delay embedding is one of the great inventions we owe to chaos theorists. It is an elegant
procedure,  which  transforms  time  coordinates  into  space  coordinates  or  if  you  prefer  that
metaphor serial into parallel information. 

In order to characterize a certain state of a multi dimensional system, one needs depending on
the number of dimensions of the system one, two, three or more independent measurements, one
for each dimension. The brilliant idea of chaos theorists was that independence of the data was
important but their origin was not, provided they came from the system under study. To obtain say
three independent data for each time step from a single time series, they could not just take a
block  of  three  consecutive values.  Why  not?  Because the data show more or  less auto(self)
correlation and thus are not independent.  The data are in part  redundant.  Which means they
contain the same information. But the autocorrelation declines with time and the next value with
reasonably low correlation to the first selected value is a suitable candidate for the next (second)
independent value. The delay time between the first and second values will be the same as that
between the second and third values. It  is called 'tau' (Greek for t).  The following table shows
schematically how the values are picked.

One value      time steps
per dimension 1 2 .... n
-------------------------------------------------------------------------------------------------
1st dimension x(1) x(2) .... x(n)
2nd dimension x(1+tau) x(2+tau) .... x(n+tau)
3rd dimension x(1+2*tau) x(2+2*tau)  ... x(n+2*tau)
.....
kth dimension x(1+(k-1)*tau)  x(2+(k-1)*tau  ...     x(n+(k-1)*tau) 

To build a two dimensional data base one would take the value at time (t) for the first dimension
and the value at time (t + tau) for the second dimension. For each value of the first dimension
there would be a corresponding value for the second dimension which was 'tau' time units away.
This can be easily carried over to three and more dimensions. 

So far we have not offered judgement criteria for reasonable decorrelation. Indeed the decision is
not clear cut. A broad range of values have been tried successfully. Here we will give two popular
measures referring either to rank correlation or to mutual information. If  the rank correlation is
below 1/e = 0.3678.. then the values are reasonbly decorrelated (e = Euler's number = 2.7182..).
If the mutual information has its first local minimum, then there is sufficient decorrelation. Usually
the mutual information first declines for several time steps, but very often this monotonous decline
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is interrupted by one or two higher values. The first local minimum is the last value in the row of
monotonous decline. It is our experience that in practice there is not much difference between
these two criteria. For further discussion of suitable correlation values see below.

In order to determine the rank correlation of the data, we have to write the column containing them
to an ASCII-file. The data to be written are the four week averages of the logarithmic differences
9..13 weeks. They will be later referred to as the first dimension data. We have to write them to a
file with the number of data given in the first row, followed by the data one per row, because this is
the file format expected by all our programs.  

The figure shows the output of the rank correlation program. We see that the inital correlation for
one week is high, about 0.97 but it declines rapidly with time and the critical value of 0.3678 is
passed in the 8th week,  when the correlation is down at 0.299. We should keep this in mind
because we will need this information later.

The entropy table for the DOW data shows that the entropy increases with time, we could also say
our uncertainty increases and the mutual information of the data declines with time. After four
weeks only one fifth of the original information is contained in the data. The mutual information is
down at 0.21 from 1.0 at time zero. The first local minimum of the mutual information is reached at
11 weeks with 0.1159. It will be clear soon why we emphasize this point here. Besides the mutual
information the table gives values for  conditional  entropy and conditional entropy per bit.  The
values for conditonal entropy and mutual information depend on the number of classes. While the
entropy per bit gives the conditional entropy relative to the resolution (number of classes) in bits.
Here we have 32 classes = 25 = 5 bit resolution. 
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We can learn from the table that the conditional entropy reaches a plateau value after nine weeks,
with about 0.46 per bit. The conditional entropy is smaller or equal to the (unconditional) entropy,
but it can never exceed it. Here it is used as a measure of our uncertainty about the outcome at
time zero if we know what happened at 1 or 2 or 3 .... time steps earlier.  The number of classes
chosen does not effect very much the outcome of the test. We would have a very similar picture,
with respect to entropy, conditional entropy and mutual information, with 16 classes = 24 = 4 bit
resolution. We would, however, sacrifice resolution. On the program disk there is a program which
uses 6 bit resolution (64 classes). What is the case against using that program? In the statistics
literature a number of classes close to the square root of the number of data is recommended,
therefore we chose 32 classes here. If the number of data is much smaller or much larger than
1000 the smaller or the higher resolution should be used respectively.

Time delay embedding of the DOW JONES data

We have observed that with 8 time steps delay the rank correlation was smaller than 1/e. While
the first local minimum of the mutual information was reached after 11 weeks and the conditional
entropy changed only marginally after 9 weeks. This would suggest that the delay time (tau) for
embedding should be in the region of 8 to 11 weeks. We will start with 8 weeks and show the
embedding in two dimensions.

21



22



We show two graphs, which give you complementary information. The x,y scatter plot shows the
known points in state space of the system. From this plot one can count for how many time steps
the system stayed in certain regions of the state space, such as the zones near the extremes. And
this plot shows us which points will be considered if we look for the nearest neighbours in state
space. This task will be dealt with in part III. The line plot connects successive points and thus
shows the path of the system in state space, which would not become clear from the scatter plot
alone.  

The weighted averages talked about in the context of genetic algorithms could likewise be used
for time delay embedding. Rank correlation becomes smaller than 1/e at eight weeks delay which
is the same as found for the ordinary moving average. However, the resulting two dimensional
phase diagramm is not very different from that of the other average, therefore we skip it here. 

As already mentioned the choice of tau (time delay) is more or less arbitrary. If tau is chosen too
short, the attractor will not be completely unfolded, and we would underestimate its dimension. If
tau is too long the attractor will become distorted and order would be lost. The following figures
show a  series  of  two  dimensional  phase  diagrams  with  increasing  tau.  The  first  coordinate
(horizontal scale) is our usual 1st  dimension. It  is kept  constant for  all  figures.  As the second
dimension (vertical scale) we use the same time series with the only difference that it is shifted by
2,4,6,8,10 and 12 time steps relative to the first dimension. 
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You will easily recognize the order in the diagramm with tau=2 time steps . The curve uses certain
paths  repeatedly  and  thereby  draws  characteristic  patterns.  With  increasing  tau  this  order
disappears gradually. It becomes more and more difficult to identify certain patterns. We know
that the correlation between different points on the curve are limited to about 10 time steps. But
the patterns emerge because in a non periodic way the curve reappears in the same regions.
These recurrences are far apart in time and thus uncorrelated in the time domain. Therefore the
order we see is not due to autocorrelation but due to an ordered dynamic which is an inherent
property of the market.

Other embedding variants

Time delay embedding has become the classical embedding method for chaotic data, however, it
is not the one and only way of embedding. It has been suitable for many chaotic model systems,
for which almost endless and noise free data are available. In the case of noisy and limited data
series it is not always the method of choice. Our experience is that it does work if the data series
has been smoothed with appropriate factors selected by genetic algorithms. 

Another embedding method utilizes first differences as second dimension and second differences
for the third dimension, but this method requires very smooth data series. We have already tried it
sucessfully with two dimensions and excessively smoothed data. A further method uses inverse
exponentially weighted averages for  the second dimension and first  differences of  the second
dimension as third dimension.  We  use still  another  method which resembles the former,  with
respect to non linear weighting. But we weight the data according to their information content.

As already discussed above, averaging can reduce noise, but it also smears out information. We
require a smooth curve for  the second dimension, but we want to lose as little information as
possible. To come close to this goal we can weight the data according to their information content.
We know this already from the analysis of our data with the program ENTRO32.EXE which shows
the mutual information of the data. The information declines with time, that is what one would
expect. But how much of the information gets lost in each time step. This becomes apparent if we
look at the mutual information of the data. It shows how much information earlier values of a time
series provide about later values of the series. The latest value contains 100% information about
itself, of course. The preceding value contains about 60% information about its successor. If we
go back two time steps we see that it contains roughly 40% information about the latest value.
Even earlier values contain about 30%, 25% etc about the far future. We see that there is an
inverse exponential decline of information. In the first step we loose 40%, then 20%, 10% and 5%,
soon approaching 0. These are only approximate values. One should not expect real world data to
look exactly like that. But essentially the information decline resembles this example quite closely
and the residual information often reaches a plateau. 

Obtaining the second dimension

We want to use our data to forecast the future. Now we have to decide, how far into the future, i.e.
for how many time steps, we want to make our forecast. And second we have to decide, in which
way we want to make our forecasts, either as a one shot prognosis or as an iterated prediction,
because that will determine how the data will be weighted.   

How to predict, in one step or iteratively

A forecast leading say four time steps into the future may be carried out in several ways. 
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a) In one step  - forecast over four time units.
b) In two steps  - over two time units each.
c) In four steps  - of one time unit each.

Procedure (b) and (c) are called iterated (repeatedly performed) predictions. For our example we
will use the one step procedure, but we will briefly discuss the iterated prediction because in the
chaos literature one finds strong arguments in its favour. 

Iterated predictions use the predicted value of the first forecast as an input value for the second
prediction and the result of this as an input for the next one and so forth.

One argument in favour of iterated predictions refers to the Lyapunov exponents. In short  the
Lyapunov exponents are measures of the sensitivity of a chaotic system to small changes in initial
conditons. If  a Lyapunov exponent is positive, initally small differences will grow with time. All
chaotic systems possess at least one positive Lyapunov exponent. The smaller the exponent the
more benign the system will behave. It was argued that in iterated predictions the prediction error
would grow with the largest positive Lyapunov exponent, while in the one shot prediction the error
would grow with the sum of all positive Lyapunov exponents. It is apparent that the sum yields the
bigger  value.  However,  this  argument  holds  only  for  systems  with  more  than  one  positive
Lyapunov exponent.  Chaotic  systems with three dimensions have only one positive Lyapunov
exponent.  In  the  few  cases  where  market  dimensions  were  estimated  no  more  than  three
dimensions were found. So this argument does not count for much in our case.

Chaotic  model  systems  even  if  of  low dimension  could  be  predicted  better  with  the  iterative
method.  But  those  model  data  are  free  of  noise  and  the  underlying  systems  show  strictly
determined behaviour. In the case of noisy data series the iterative method will inevitably amplify
the noise and this may result in predictions worse than those with the one shot method. Method
(b), see above, is a compromise between the two extremes. However, we suggest to start with the
one shot method, because it is easiest. If the data are not too noisy, method (b) could probably
give better results. Only if method (b) is better than method (a) an attempt with method (c) seems
justified.

One step prediction over four weeks

We want to forecast four weeks ahead in one step. To obtain the second dimension from the first
one we proceed as follows:

For convenience we multiply all factors by 10000. The only reason for this is that this way we can
spare some typing. The first value of the first dimension series is multiplied by 10000, the fourth
value  is  multiplied  by  the  corresponding  mutual  information  times  10000,  the  fifth,  sixth  and
following  values  downto  the  13th  value  are  each  multiplied  with  the  corresponding  mutual
information times 10000. All the products of first dimension value multiplied by the corresponding
mutual  information,  times  10000  are  summed  up  and  devided  by  the  sum  of  the  mutual
informations times 10000. 

(F10*10000+F14*2133+F15*1792+F16*1551+F17*1313+F18*1263+F19*1174+F20*1169+F21*11
59+F22*1159+F23*1187)/(10000+2133+1792+1551+1313+1263+1174+1169+1159+1159+1187)

Provisional second dimension

Above you see the formula as it  is keyed into the spreadsheet. This transformation formula is
copied into the column next to the data series of the first dimension, here it is the G column. It will
calculate  the  values  for  the  second  dimension.  These  values  are  still  provisional.  The  final
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transformation will be determined by trial and error,  by minimizing the direction changes of the
second dimension. We start with factors 1,4,5,6,...13 and count the direction changes. Then we
reduce the number of factors stepwise by leaving the last one out and counting the changes in
direction  each time.  The  number  of  factors  which  gives the  minimum number  of  changes  in
direction is the number of choice. Once we have determined both dimensions we can develop a
predictor based on the two dimensional projection of the system. 

Final second dimension

In our example the formula as given above will lead to 169 changes in direction. Then we reduce
the numerator by the last product and the denominator which contains the sum of factors, by the
last factor. We obtain a shortened formula which gives us 171 changes. If we reduce the formula
once more as just described, we will get 161 changes. Even shorter formulas will increase the
number of changes to 163 and 167 and thus are not beneficial. Our optimal formula includes the
factors down to 1159, which represents the first local minimum of the mutual information. This
coincidence, between the optimal length of the formula and the first local minimum of the mutual
information can be observed quite often, but not always.

The  figures  show the  one  dimensional  curve  for  the  second  dimension,  which  is  somewhat
smoother than the first dimension. 
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If we plot the first dimension against the second dimension we obtain the two dimensional curve
shown above. 

How many dimensions are necessary?

For theoretical reasons at least three dimensions are necessary to characterize chaotic systems,
since only systems consisting of three or more components can show chaotic behaviour. Some
researchers have estimated how many dimensions markets would have. They came up with a
fractal  (broken)  dimension of  2.2 for  a currency market  (US-$/Yen) and with 2.33 for  a stock
market index (S&P 500). In both cases these values are closer to two than to three dimensions.
Nevertheless these data would mean that a third dimension would be necessary to characterize
unambiguously a particular state of the system. 

Suitable choices for the third dimension

We have tried out different types of predictors for the same markets. Some of which use only two
dimensions, but in that case they take more than one value per dimension, in order to obtain
vectors for each dimension. Others make use of three dimensions. 

Then what is the third dimension we would select. For time delay embedding the situation seems
to be clear. We just double the delay time to obtain the value for the third dimension. If the delay
time is chosen too long there would be no interrelation any more between the first and the third
dimension. But if we choose to embed the system in three dimensions we should select a time
delay value which still  preserves some association between the first  and the third  dimension.
Otherwise we would loose a typical trait of a chaotic system. Thus to keep all dimensions of the
system coupled one has to accept higher correlation values between neighbouring dimensions.
For our example it would mean that we could use a time delay in the range of 4 to 6 weeks if we
embed in three dimensions. 

So much to the time delay embedding. It should have become clear meanwhile how to apply this
method. The subsequent explanations will predominantly refer to non linear embedding. And the
'nearest neighbour' predictor will use that method. But certainly a predictor based on time delay
embedding would also work. If you go thoroughly through the next part you will be able to set up a
time delay based predictor on your own. If you do so and aim to compare the two predictors you
have to consider that they will not predict the same thing. The time delay predictor will predict the
first dimension, while the other one will predict the (smoothed) second dimension. Of course both
will  be compared to the statistical  error  for  the relevant dimension,  but  it  would still  resemble
comparing apples to pears. A fair comparison would have to be based on the same prediction,
and fortunately this is not difficult to achieve. You will have to back calculate the first dimension
from the second, which is no problem with the formula at hand. See below for back calculation.    

Generating the third dimension for our data

We could use first differences of the first or the second dimension to obtain the third dimension. In
case of the time delay embedding we would be free to choose. But for the non linear embedding
we could only use differences of the first dimension. The second dimension is already a short term
integration of the first dimension. If we differentiate the second dimension, we would end up with
something similar to the first dimension. 

The data series of the weekly differences of the first dimension does not yield a smooth curve, but
is  rather  erratic.  If  we  apply  the  COUNTCD.WK1  formula  to  our  example  data,  we find  473
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changes  in  direction.  This  can be improved upon by averaging  over  several  values.  A linear
moving average over six values was often found suitable in the case of four week prognoses. If
we use this fist formula here we can reduce the changes in direction to 183. This series will be our
third dimension. 
  
This averaging does not only result in a smoother curve but also in a better correlation with the
second dimension value four  time  steps  ahead,  which is  the  value we wish to forecast.  The
corresponding  value  for  the  first  dimension can be back  calculated from that  for  the  second
dimension. We will come to that later.

With the extracted market dynamics at hand we can try to develop prognosis instruments. Which
values should be the  basis  for  our  prognoses  and how many values are needed for  optimal
predictions?  Obviously we should take those values which contain the most information about the
future value. We can measure the information content with the mutual information. The program
we used before ENTRO32.EXE worked with one data series and reported the mutual information
of  data  within  the  same series.  Now we would  like  to  know the  mutual  information  between
different series. This can be done with program CONENT32.EXE which works with two data files.
It  reports how much information the second data series provides about the first.  The program
RANKCORR.EXE  can  also  compare  two  different  files,  but  the  program  output  cannot  be
interpreted in terms of information content. It may however give some useful hints concerning the
correlations between the different dimensions.
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As described above for the first dimension, the data for the second and third dimensions have to
be written to an ASCII file. The second dimension has 958 data and the third dimension has 965
data. The programs have no problem if data files to be compared have different lengths.

Looking for an optimal model

We  will  now  load  the  program  CONENT32.EXE  to  measure  the  cross  dimension  mutual
information.  The  first  file  asked  for  by  the  program should  be the  file  containing  the second
dimension data series. As second file we should try the first dimension series, second dimension
and third dimension one after another. One has to look for high mutual information of the data
from four  and more time steps back.  We  will  take no more than four  values altogether.  It  is
recommended to take one value more than the number of dimensions of the underlying system. If
more values than necessary are used for prognoses the prediction does not improve, but to the
contrary may even worsen. This was a common experience made by several researchers.

For  the DOW  JONES data the  following picture  presents:  The mutual  information  of  the  first
dimension about the value of the second dimension four weeks later is 0.4062 and for five weeks
ahead it is 0.3728. The information of the second dimension about its future values four weeks
ahead is 0.3170 and for five weeks it is 0.2727. The information of the third dimension about the
second dimension value is highest  six weeks in advance with  0.1566 and thus clearly  above
background. For the third dimension the maximum of the mutual information does not coincide
with the maximum of the rank correlation. The latter is highest eight weeks in advance.

Estimating the total information to be gained

Which four values are optimal. Shall we simply use the four highest values? Definitely not! We
have to look for the highest total information. If any two values are highly correlated the two values
together do not contribute much more information than one of them alone. Therefore highly cross
correlated values should be avoided. 

The auto correlation of each of the three dimensions is quite high, whereas the interrelation is
much smaller. Therefore it is recommended to take as the first three values the largest values of
each dimension. Difficult becomes the decision for the fourth value, which could be from the first
or the second dimension. A look at the rank correlation shows, that a five weeks prognosis based
on the first  dimension correlates much better with the second dimension (0.893) than the five
weeks auto correlation of the second dimension (0.789). This finding would favour the following
structure for a prognosis based on a three dimensional non linear embedding:

        i n p u t   v a l u e s                 ou t p u t
1st dim  2nd dim  3d dim    second dim  
----------------------------------------------- -------------------
t-4, -5          t-4         t-6                 t

With the input values on the left side we want to forecast the output value on the right side. We
will forecast  the second dimension value. From this value we can however back calculate the
corresponding value for the first dimension. 

We have to keep in mind that rank correlation and mutual information are global measures, which
are valid for global optimizers, see below. In the case of local optimizers this need not be true. We
would therefore recommend to try several different combinations. 
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To choose a prediction method

The next  step will  be the  decision for  a certain  type of  predictor.  It  may be a neural  net  for
example which is a popular choice these days. Several authors have shown that neural nets were
superior to other predictors particularly if only small numbers of data were available, while with
plenty of data available the differences vanished. Neural nets use different  activation functions
and depending on the type of function the data have to be normalized in different ways, before
they can be fed to the nets.  We  use to develop three types of  neural nets:  Backpropagation
networks after preselection with genetic algorithms and adaptive logical networks which both are
global  optimizers,  or  selforganizing  maps as  established  by Teuvo Kohonen,  which  are  local
optimizers. These types of neural nets are mentioned here primarily for completeness, they will
not be discussed in detail. However, some misconceptions about neural nets, should be briefly
addressed here.

Neural nets are optimizing tools, most of which belong to the class of non linear optimizers. They
are not automatic generators of optimal models for complex systems - and no other method can
achieve this task. There exist mathematical theorems which state that it is impossible to construct
an algorithm which will automatically find and extract all information contained in a data series. 

Therefore, you should not ask too much from a neural net. If you select your model carefully, you
can optimize it with neural nets and obtain a very good model. If you select an inferior model, a
neural net will most probably not come to your rescue. If  a bad model is optimized with neural
nets, it will not become as bad as it could be, but it will never become a good model. 

So much to neural nets, model selection and optimization. Now we will change our focus and have
a closer look on so called 'nearest neighbour' predictors. This will be done in the next part.
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Part III - NEAREST NEIGHBOUR PREDICTION

Introduction

First let us give a general introduction to the 'nearest neighbour' world. We will keep the matter
simple.

Most forecasting programs are global optimizers. All these programs will be developed using a
large number of so called 'representative' data, for training purposes. They apply a certain rule to
all these data and look for the total error. The rule will be modified until it minimizes the overall
error  with  test  data,  which  are  not  included  in  the  training  data  sets.  This  is  true  for  linear
multivariate regression programs and many neural net applications.

A different approach is used by local optimizers. They apply their rules only to a small number of
selected data sets namely those, which are most similar. These are selected anew each time from
a data  base  and  are  called  the  nearest  neighbours.  As  the  actual  data  change  the  nearest
neighbours change as well.  

Local  optimizers  compare  favourably  with  global  optimizers,  particularly  if  both  are  linear
predictors. If the data base is very large they even match the best neural nets.
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Advantages of nearest neighbour methods over neural nets

Nearest neighbour methods offer a number of advantages even if compared with optimal neural
nets. 

- transparency
- low cost
- self improving capability
- no lengthy training

Transparency is a strong argument in favour of nearest neighbour predictors. One always knows
which data are judged as similar and therefore used as nearest neighbours. There is no black box
decision.

Low cost is another advantage of nearest neighbour methods. Basically the method involves a
sorting algorithm, which requires a simple spreadsheet program.  

The predictors are self improving. Since the data base will increase with time, it will become more
and more likely to find very close nearest neighbours, on which to base a forecast.

No lengthy training phase is required to establish a nearest neighbour predictor.     

How to find optimal nearest neighbours

Once the criteria for nearest neighbours are defined, the rest is easily done with a spreadsheet
program. 

Weighting of the reference values 

The  first  decision  is  about  the  reference  values.  These are  the  values to  which  the  nearest
neighbours refer. Nearest neighbours will be selected, because they are similar to these values.
Shall we treat all the values the same or is it better to weight the values differently according to
their importance, i.e. information about the future. Remember what was said above about validity
of  mutual  information  for  local  optimizers.  If  you  want  to  adapt  the  weighting  to  the  mutual
information you should know how it  is  calculated.  It  is  important  to know that  the conditional
entropy and mutual information measurements are performed with normalized values. All values
are devided into classes, which spread evenly between the minimum and the maximum value.
The calculations are performed with the classified data, not with the absolute values. 

The  average  absolute  differences  between  individual  data  of  each  dimension  may  differ
considerably.  Since in  our  example the  second dimension is  a  smoothed  first  dimension the
average difference from time step to time step is smaller than that of the first dimension. The third
dimension will have the smallest average difference. If similarity is important and if original values
are compared, then the third dimension values contribute only with a small fraction to the total
difference. This can be compensated for by weighting the data with different factors. In a neural
net this would be done automatically, but for this method it has to be done by hand.

To summarize, we can weight the data according to their mutual information and according to
their spread between extreme values. 

38



Choosing a distance measure

If the question of weightings is solved we have to decide about the distance measure we wish to
apply. One common measure is the absolute deviation also known as Manhattan norm or city
block  norm.  This  norm summarizes  the  absolute  differences,  which  means  that  all  individual
differences to the upside or to the downside receive a positive sign and are added. The total is the
absolute difference.

The  Euklidian  norm  is  another  distance  measure.  This  norm  first  squares  the  individual
differences, then builds the sum of squares and finally takes the root of the sum of squares. This
norm is computationally more expensive than the above method. Which means that it takes more
time (factor about 4 depending on computer language and compiler) to calculate the Euklidian
distance than the absolute distance. If the databases are small and the computer is fast, it would
not make much difference.  If  the data base is large and the computer  is slow it  might  be an
argument to favour another distance measure. 

Less well  known is the supremum norm.  It  calculates the absolute differences and takes the
largest of these distances as total distance measure. This is the computationally fastest method.

In our example we will use the absolute difference as the distance measure.

If we only looked for the very nearest neighbour we could start now. In practice the very nearest
neighbour alone is not the best choice. It rather pays to average over several nearest neighbours.
We have tested between one and four nearest neighbours and found three neighbours best in
most cases. It is no effort to try different numbers of neighbours. If  we decide to average over
several neighbours another question arises. Shall we weight the different neighbours uniformly or
shall  we  weight  them  with  respect  to  their  distance.  In  our  experience  distance  weighted
neighbours were superior to evenly weighted neighbours. Again we have to choose a suitable
weighting. 

We have weighted the neighbours inversely proportional to their (absolute) distance, with good
results. The formula given below was used for weighted averages of three nearest neighbours. It
assumes that the reference values are placed in row 10, the output of the nearest neighbours are
placed in column F and the distance calculation is performed in column G.

(F11/G11+F12/G12+F13/G13)  /  (1/G11+1/G12+1/G13)

Other weightings are conceivable as well. One could also try to weight the neighbours inversely
proportional to the square of their distance. 

Predictors can have different orders: 0th, 1st and 2nd order

Now the predictor is ready and we could start with the nearest neighbour prognosis. The type of
predictor so far described is called a predictor of zero order. It means that the predicted value is
taken as it is, without further modification. We will treat only this type of predictor here.

More sophisticated predictors based on nearest neighbours are feasible and we will mention them
here without  going too much into details.  One refinement  would be to draw a regression line
through known values of present time and past to the forecasted value and then take the value on
the regression line. If the regression curve applied is a straight line, then the predictor is called a
local linear predictor.  If  the regression curve is a second order polynomial  it  is  called a local
second order  predictor.  Predictors  of  even higher  order  have no advantage.  The  local  linear
predictors are more suitable for iterative predictions over several small time steps. For one step
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predictions  over  four  time  steps  they  are  not  ideal  since  the  trajectory  may  have significant
curvature within that time, nevertheless they are often the method of choice. Local second order
predictors  are  theoretically  better  suited  to  that  problem.  However,  they  are  less  robust  and
sometimes give curious results.

Measures of error and prognostic gain

We want to forecast trend changes as compared to statistical prediction, see below. In case of the
Dow Jones data the average change of  the short/intermedite term trend was zero over three
decimal digits for the last twenty years. This was true for periods of one to ten time steps at least.
Therefore the best statistical assumption we can make is that the trend will remain unchanged.
Common forecasting rules which rely on probabilities, like auto regression of moving averages
(ARMA) cannot in the long run improve upon the statistical error. We can make better predictions,
provided that three conditions hold:

a) the trend changes
b) we forecast the right direction of change
c) we do not forecast too much change

We will always compare our prediction error with the statistical error. It will only make sense to
develop  a  predictor  if  it  yields  significantly  and  consistently  better  predictions  than  statistical
forecasts.  How can we measure the prognostic  gain i.e.  the advantage we take from using a
predictor. A variety of measures have been suggested, which asymptotically are equal, but with
small samples they give quite different results.  We will describe them and discuss in short the
pros and cons. 
 

Absolute error measures 

mean abs. gain (%) = [1-(abs. prognostic error / abs. 
                                  statistical error)]* 100.

abs. prognostic error = absolute difference between 
                                      forecasted and  true trend.

abs. statistical error = absolute difference between
                                     actual and future trend

Correlation measures 
correlation gain = correlation R² of forecast with true
                            value as compared to statistical R² 
                             i.e. self correlation for forecasting period.

Root of mean squared error measures 

rms gain (%) = [1-(rms error / rms difference)]* 100

rms = root of mean squares 

rms(d) = root of mean squared differences (4 week
               differences) 
rms(e) = root of mean squared error (actual minus forecast)
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Rmsd is a measure of the statistical error.

Rmse is a measure of the error made by a forecasting procedure.  

Pros and cons of the different measures

Correlation measures are only suitable for long data series. High correlation values denote relative
similarity of  two data sequences.  One must  not  mistake a similar  for  a congruous sequence.
Similarity is a measure of shape and is irrespective of size. It is not a good measure of error in the
case of short time series. If the true value and the forecast differ only by a constant factor and/or a
fixed amount the error may be very high even if the correlation is perfect.

The rms gain is a suitable measure for long time data series, but it is less well suited to short
series since squaring of errors makes it very sensitive to outliers. Therefore it will change rapidly
over time. In other words it is not a robust or stable measure.

Of all the measures of error and prognostic gain listed above the absolute gain is the most robust
and reliable. It has the same advantage over the rms measure as the method of least median of
squares, also known as LMS has over the least mean squares. The LMS method also minimizes
absolute differences. 

It is not much effort to calculate all three listed error measures. And we do that routinely. With
these  tools  at  hand  we  can  make  predictions  and  we  can  control  if  our  endeavours  were
worthwhile.  
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Error distribution

It has been shown for chaotic systems, that the local Lyapunov exponents differed considerably
depending on the regions of an chaotic attractor. A large Lyapunov exponent means that even
initially very close trajectories will within a few time steps drift apart and become dissimilar. Since
our prognoses are based on these similarities a large local Lyapunov exponent will lead to a large
possible error and the opposite holds true for small Lyapunov exponents. If the regions with small
and large Lypunov exponents are identified, one can at the time of prognosis give the size of the
error to be expected.

The investigations just mentioned were carried out with the Lorenz model system. In that model
system enough data were available to allow for thorough statistical analyses. This is usually quite
different for empirical data. We have only a limited number of observations, from which we could
draw conclusions. Can we obtain reliable information from small numbers of data? In general the
error declines proportional to the square root of the number of data.

Improved error estimation

We could try to apply a bootstrap procedure on our error data, which means to repeatedly draw
samples with replacement. The bootstrap is a method which makes efficient use of computing
power. The method has been developed quite a time ago by Bradley Efron, but only recently it has
been  verified  mathematically  and  accepted  by  the  society  of  statisticians.  The  bootstrap  is
particularly  valuable  if  applied  to  small  sample  data.  If  done  carefully  it  can  provide  a  good
approximation of the true distribution. Theoretically we could take an infinite number of samples,
but  this  is  neither  desirable  nor  necessary.  Usually  the  estimate  of  the  true  distribution  will
converge,  which  means  it  will  become  more  and  more  stable  until  only  minimal  fluctuations
remain. We could draw as many samples as necessary until we have arrived at such a stable
estimate. The absolute error values may not be very reliable, but the relative error distribution
should come close to the true situation. 
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How to apply the nearest neighbour predictor

We can do all  the preprocessing with a spreadsheet  program. Let  us call  this the processing
spreadsheet.  It  contains  the  formulas  for  the  various  calculations  and  transformations.  The
complete processing spreadsheet for the DOW JONES predictor will we provided together with
this manual.

A B    C      D   E F G
----------------------------------------------------------------------------------------------------

    1st dim  2nd dim   3rd dim
----------------------------------------------------------------------------------------------------

    trend    trend    non lin. 1st diff.    averages
date index       orig.     aver. smooth. of 1st dim   of 1st diff
-----------------------------------------------------------------------------------------------------

To the right of column G we will copy the parameters used for nearest neighbour determination. 

(-------- input values -----------)              output value

dim1     dim1   dim2    dim3       dim2
(t-5)   (t-4)    (t-4)    (t-6)          (t)

We want to forecast trend changes four time steps ahead. Therefore the values on which we base
our  predictions  must  be  at  least  four  time  steps  away  from  the  value  to  be  predicted,  see
discussion above. In this example we will base our predictions on the four values, named input
values. The predicted value should be as close as possible to the output value. The letters dim1,
dim2 and dim3 refer  to the data column from which the values are taken.  while the letters  in
parentheses denote the number of time steps between input and output value. For example (t-5)
denotes a value to be taken five time steps earlier than the value to be predicted. It is apparent
that our input values contain the most recent values from each of the three dimensions plus one
value  from  the  preceding  time  step.  We  do  this  because  these  values  contain  the  most
information about the output value. 

Sometimes other  input  values may be found superior.  Often the values from two dimensions
suffice. For example dim1(t-5), dim1(t-4), dim2(t-5), dim2(t-4) has been a good combination on
many occasions.

If  the  final  form  of  the  predictor  has  been  set  up and only  actual  values  have to  be  added
regularly,  one  can  extract  a  sub  spreadsheet  from  the  original  processing  spreadsheet
(DJIAPROC.WK1), which contains only the last say forty data sets and all formulas. We can call
this our update spreadsheet (DJIAUPDT.WK1). In this spreadsheet we can work with new data
and perform all calculations of the values for the three dimensions including the back calculation.
From this  spreadsheet  we can  copy the  new values and  add  them to  our  data  base  in  the
predictor spreadsheet (DJIAPRED.WK1), to be dealt with in the next section. 

Creating a predictor spreadsheet

The predictor will be placed on a separate spreadsheet. For this purpose we copy only the   v a l u
e s  , not the formulas of our input and output data into a new spreadsheet. We usually start with
row 10 as first data row and we place the input data in column B..E and the output in column F. 
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We will provide the complete predictor spreadsheet (DJIAPRED.WK1) together with this manual.
But in case you are in doubt what is what and where to find everything we will describe it here.

Column A is reserved for the numbering of the data sets. Our data are in descending order, which
means that the most actual values are on top and the values of the distant past are at the bottom. 

Our distance calculations will be performed in column G. Column H through L will contain the
calculations of  the nearest  neighbours.  We  reserve column H for  the very nearest  neighbour,
columns  I  and  J  contain  linear  averages  of  three  and  four  nearest  neighbours  respectively.
Columns K and L contain  weighted averages of  three and four  nearest  neighbours.  Columns
farther to the right are reserved for the calculation of error and prognostic gain.

We want to test our nearest neighbour predictor and find out how it would have performed if we
had used it during the last half year.

Column A was left free. This columns is reserved for a list of data set numbers, which we will set
up now. We write into cell (A10) the following formula: (A9+1). And a 1 will appear in the cell. We
copy this  formula  into  the  range A10..A1000 and we get  a column of  numbers  running  from
1..1000. Then we transform the formulas into values by copying the values of A10..A999 into this
range. The list may be longer, but it must not be shorter than the length of the data base.Into cell
(G10) we write the following formula:

@ABS(B10-$B$10)+@ABS(C10-$C$10)+@ABS(D10-$D$10)+
@ABS(E10-$E$10)

The formula is copied into all cells in the range (G10..G999). What does this formula mean? We
ask the program to compare the cells in columns B,C,D,E of all data sets to the set in row ten.
The $-signs denote an absolute address, as compared to the relative addresses in most of the
other formulas. The differences in B,C,D,E are summarized and copied into column (G) of the
respective data set.  

Sorting the data sets according to distance

Our reference data set is the one in (A10) ...  (G10).  Now we will make use of the data base
function of the spreadsheet program. First we sort all data sets in the range A10..G999 according
to  their  distance  to  the  reference  data  set.  Therefore  we  ask  the  program  to  use  column
(G10..G999) as first (and only) sorting key. 

Please do not  take these numbers too literally.  We will  probably not  have 990 data sets and
therefore part of the range will be empty i.e. hold no data. Therefore the actual sorting range has
to be adapted to the size of the data base. 

We will be asked in what order, ascending or descending we wish to have the data sorted. We
choose ascending order, which means that the data sets with the smallest differences are on top
and vice versa. The data set #1 will remain on top because its distance to itself is zero. 

Computing the output of  nearest neighbours

In row 11 we will find the very nearest neighbour, in row 12 the next one and so on. Column F
contains the outputs. The desired output is of course the one in cell (F10). The outputs of the
nearest neighbours will be computed in cells (H10)..(L10). The cell (H10) which is reserved for the
output of the very nearest neighbour will simply take over the value from cell (F11). Cells (I10) and
(J10) will calculate linear averages from cells (F11..F13) and (F11..F14) respectively. Cells (K10)
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and (L10) will calculate the averages of the outputs (F11..F13) and (F11..F14) weighted by their
inverse distances (G11..G13) and (G11..G14), see above for the weighting formula. 

It  is very important to pay attention that nearest neighbours which are less than four data set
numbers apart from the reference set are excluded from the calculations of nearest neighbour
outputs, because for real prognoses four weeks ahead these data sets would not be available.

If the calculations are valid we can copy the formulas of cells (H10)..(L10) into the next row, range
(H11).. (L11). When this has been done we transform the formulas in cells (H10) .. (L10) into their
values. The sequence of events is important. 
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Resorting the data sets according to data set number

When  we started with our nearest  neighbour  calculations the data sets  were already ordered
according to their set numbers. Meanwhile they are ordered according to their distance to data set
#1. Now we can calculate the nearest neighbours of data set #2. But first we have to reorder the
whole database according to the database numbers. We have to change the range to be sorted
into  (A11..G999)  and we have to  change  the  sorting  key into  (A11..A999).  Next  we have to
change  the  formula  in  cell  (G11)  because  now the  neighbourship  to  data  set  #2  has  to  be
calculated.  We  only  need to  change the  absolute  address  of  the row from $10 to  $11.  This
address occurs four times in the formula and we have to change them all. Then we have to copy
the contents of cell (G11) into the range (G11..G999). The data are now sorted in original order
and their distance to data set #2 has been calculated. The next step will be the sorting according
to distance as described above. 

One has to calculate the nearest neighbour predictions for many occasions in the past before a
reliable estimate of their usefulness can be obtained. We do this for at least a half year period.
Should the predictor  give satisfactory results for  the test phase it  can be tried with new data.
Cross model validations are necessary, but they can be biased if only a small number of data is
collected.  If  the  predictor  is  regularly  applied  it  should  be  considered  to  alter  the  data  set
numbering to facilitate the addition of new data sets. One could number the sets in descending
order from say 1000..1 or one could simply sort according to date. If the spreadsheet cannot sort
according to date, we can code the date as integer, say 990122 would mean 22nd January 1999.
There will  be no problems in the year  2000,  if  we change from six to seven digits.  We  type
1000101  for  1st  January  2000.  If  we  write  the  date  like  this  and  sort  according  to  date  in
descending order, the latest data set will always be on top. And if the data are sorted according to
distance it would be quite informative to know the date of the nearest neighbours. 

Back calculation of trend values

The back calculations will be performed with the updating spreadsheet (DJIAUPDT.WK1). In this
spreadsheet  we  have  removed  some  columns  which  were  contained  in  the  processing
spreadsheet,  because  they  are  not  needed  for  updating  or  back  calculation  of  values.  The
columns missing  in the update  sheet  are:  column C of  the processing sheet,  which held  the
logarithm of the index, column D which contained the index changes within 12 weeks and column
J  which  contained  the  weighted  averages  as  optimized  with  genetic  algorithms.  Finally  the
formulas for counting direction changes were omitted. So that the update sheet looks just like the
scheme on page 62.

The output value of our predictor is a trend, but what we really want to know is the index value
(price, exchange rate). Therefore we have to back calculate the trend values into the desired form.
A correct calculation would involve three steps.

a) back calculation from 2nd dimension to 1st dimension
b) back calculation from first dimension (smoothed trend) to
    the (unsmoothed)  9..13 weeks trend.
c) from the 9..13 weeks trend we can calculate  the  index.
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The back calculation formula from second dimension to first dimension is given below.

(-(D14*2133+D15*1792+D16*1551+D17*1313+D18*1263
+D19*1174+D20*1169+D21*1159)+E10*(10000+2133+
1792+1551+1313+1263+1174+1169+1159))  / 10000

In the updating spreadsheet (DJIAUPDT.WK1) supplied together with this manual you can see
that the back calculation of the first dimension from the second dimension as performed in cell
H10 returns the right value. Contents of D10 and H10 are identical.

Back calculation of unsmoothed trend from smoothed trend comes next. We do this here because
we need the value for the unsmoothed trend in the next step to show that the formula for back
calculating the index value is correct. Note that I10 and C10 contain the same values.

Back calculation of (smoothed) index

In the next step we back calculate the index value. The formula to be used is:

@EXP(h10)*@AVG(b19..b23)

In the update spreadsheet you see that the values in J10 and B10 are identical. In both cases it is
the true index value. But this is only a demonstration that the formula would return the right value,
if we would feed it with the unsmoothed trend. For our prognoses we work with smoothed trends
as already mentioned above. Therefore we can only back calculate sort of an average index. As
mentioned  at  an  earlier  occasion  averaging  shifts  the  maximum  correlation  between  the
unsmoothed and smoothed value by one time step to the past.  Therefore  the actual  average
correlates best with the unsmoothed value of the previous week. The average index calculated in
cell K10 correlates best with the index value in cell B11, as we expected and not with B10.  

Example prediction

We  have applied this  crude  predictor  (one step,  zero  order,  equal  weighting  of  all  inputs)  to
forecast the trend of the next four weeks, December 3 to December 24, 1998. Data sets used to
forecast are numbered -1 ... -4 in DJIAPRED.WK1. The statistical forecast would be that the trend
would remain constant,  i.e.  the trend in four  weeks will be the same as the actual  one. This
statistical  prognosis would result  in the values given in column E6..E9 in the DJIAPRED.WK1
predictor spreadsheet. The true values are given in the update spreadsheet DJIAUPDT.WK1, also
in column E6..E9. 

Depending on how many nearest neighbours were considered and if they were distance weighted
or  not,  different  values  were  predicted.  You  find  them  in  the  prediction  spreadsheet
DJIAPRED.WK1 in the columns from H6..H9 for a single nearest neighbour up to L6..L9 using
four distance weighted nearest neighbours. No matter which of the nearest neighbour prognoses
you look at, all of them would have done better than the statistical forecast. We have not back
calculated the index values for two reasons. First, it should be clear that if the trend forecast with
the nearest neighbour method is better than the statistical forecast, the back calculation cannot
but support this finding. Second, too many data in the spreadsheets would be confusing.  

We know that this finding need not be representative of the over all performance. But the example
is intended to show that this kind of prediction can work at least in principle, crude as it is, see
above. 
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Let us now look which data sets were used as nearest neighbours for the different predictions.
Note that the four predictions for  one, two, three and four weeks ahead of  Nov 28,  1998 are
altogether  examples  of  four  week  prognoses.  Because  for  all  these  forecasts  only  such
information was used which was at least four weeks old.

Date: 1203 1210 1217 1224
Nearest week week week week
Neighb. # 1 # 2 # 3 # 4
------ ---- ---- ---- ----
1st 757 411 410 842 ) data set
2nd 883 881 556 956 ) numbers
3rd 756 882 557 740 ) in sheet
4th 845 860 409 739 ) DJIAPRED

The high numbers of the data sets indicate that the nearest neighbours in state space are far
away in time. Since these are weekly data which start at number 1 for the most recent data set,
the set number 410 is almost eight years back,  and this is the neighbour closest in time. The
second nearest neighbour for the prognosis of the week ending on 1224, was number 956 which
is almost 19 years back in time.

You will find the nearest neighbours given in the table above, if you sort the data sets according to
distance. The data sets listed in column of week #1  should appear as nearest neighbours of row
B9..E9,. The sets listed in the column of week #4 should be the nearest neighbours of the data set
in B6..E6. The other nearest neighbours should appear if sorted according to distance to B7..E7
and B8..E8 respectively. We give you the table to compare those data to the results of your efforts
in following our instructions how to use the predictor. 

This crude predictor certainly has its shortcomings. There is still room for improvement as regards
to weighting of inputs, higher order (first or second) of predictor, and iterated prediction. Further
improvements are possible with a longer data base. 

The whole procedure of nearest neighbour prediction using a spreadsheet, as described here, is
somewhat laborious.  Though if one is accustomed to it the evaluation of a predictor with weekly
data for a half year can be done within thirty minutes. This was our experience with a data base of
about  a thousand data sets and on an i386 without numerical co-processor. However, once the
experimental phase is over it would be worth pondering if the whole procedure should be coded
into a stand alone computer program. 
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Summary

We  have  explained  briefly  why  statistical  methods  are  not  ideal  for  prognoses  of  market
movements.  And we described how methods developed for chaos research can be applied to
discover order in seemingly random market  data series. Procedures suitable for  extracting the
market  dynamics  were  shown.  And  a  local  predictor   based  on  'nearest  neighbours'  was
introduced.  Once established the predictor  can be applied using a spreadsheet  program.  The
example  shows that  simple means suffice  to set  up a useful  predictor.  This is not  the most
elegant way to use it, but it works. 

The methods were applied to real world data, i.e. the time series of weekly closes of the Dow
Jones industrial average. Markets behave similarly which means that their complexities are of the
same order of magnitude and the association between past and future data is comparable as well.
The example discussed here in some detail is quite typical of markets in general. Therefore the
experience gained with this market can facilitate efforts to develop predictors for other markets if
desired. For which markets  data are made available will be mentioned in the appendix. 

Predictions with better  than statistical  accuracy are limited to short  periods.  Just  how short  is
difficult to answer. As argued above, the prediction error is not uniformly distributed over the state
space of a dynamic system like a market. The Chi²-Test shows that movements in our example
market  were non random for  a period of  11 weeks.  But  this number is an average and does
neither represent the lower nor the upper limit.  As a rough estimate we would say that under
favourable conditions a prediction over six months could be achieved. But we doubt that even
optimal conditions would allow longer forecasts that deserve the name.      

Brief  discussion  of  the  chaos  theoretical  approach  versus  fundamental  analysis  and
'technical analysis'.

How do predictions based on chaos theory compare to those based on fundamental or 'technical'
considerations?  The  forecasting  methods  described  above  are  based  on  thorough  analysis.
However, the type of analysis applied does not use any concept of value, which is indispensible
for fundamental analysis. Furthermore this approach does not assume any rational behaviour of
market  participants  as  required  by  econometric  models.  And  unlike  fundamental  analysis,
economic and financial parameters other than the market price are disregarded in our analysis
and modelling. In that respect it resembles 'technical analysis'.  

The chaos theoretical approach is built around the concepts of information and complexity. Serial
information  is  not  only  extracted  from  the  available  data,  but  also  transformed  into  parallel
information.  Which  means  transforming  time  coordinates  into  space  coordinates.  This
transformation is necessary since the self similarity of chaotic trajectories becomes only evident in
space, but neither in the time domain, nor in the frequency domain. How much information in
parallel is needed in each case for optimal information extraction, will depend on the complexity of
the  system.  Several  objective  criteria  are  available  for  measuring  information  content  and
complexity. Despite the beauty of fractal graphics chaos research is serious and solid science. It
is firmly rooted in topology and information theory. 

'Technical analysis' on the other hand does not use any concept at all. It is an empirically more or
less justified collection of statistical and geometrical tools, for the application of which there exist
neither  objective criteria  nor  a  theoretical  background.  Therefore  scientists  of  economics  and
finance criticized it as being subjective and not serious. 'Technical analysts' have always denied
the 'random walk' theory. It seems that they pursued the right idea, however, their means were
insufficient. Now with chaos theory and its sophisticated tools available there seems to be no need
any more for 'technical analysis'.
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Appendix

The time series data listed below will be made available on a disk, which we supply together with
this instruction manual. You will find data for 15 stock market indices, 6 foreign exchange rates
against the US-$ from which you may compute 15 different mutual exchange rates. There are 2
commodities  and 2  financial  futures,  5  short  term interest  rates  (3  months)  and 5 long  term
interest rates (10 years government bonds). Altogether these are more than 40 different individual
markets, about 30,000 individual data.

    Stock markets        Data (approx. numbers)
    S&P 500   1000
    DJIA 1000
    France 1000 6000            
    DAX                1000
    FTSE100          1000
    Nikkei                1000

    Australia              800
    India                  800
    Hongkong             800
    Korea                800
    Malaysia               800 7200
    Philippines            800
    Singapore              800
    Taiwan                 800
    Thailand              800
--------------------------------------------
      Currencies  
    DM/$                  1000
    Yen/$                 1000
    French Franc/$  1000
    Swiss Frank/$        1000    6000
    $/Ecu(Euro)        1000
    Br. Pound/$        1000
--------------------------------------------
    Commodities
    Gold                800     1600
    Oil                 800
--------------------------------------------
    Financial Futures
    T-Bonds           800     1600
    T-Bills            800
--------------------------------------------
    Interest rates (3 m)
    DM                 800     4000
    French Franc      800
    Br.Pound         800
    Yen             800
    Swiss Frank     800

    Interest rates (long term government bonds)
    DM               800              
    French Franc   800
    Br.Pound        800    4000
    Yen           800
    Swiss Frank    800
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Data sources

The data come from various sources, as listed below. Further information about these and other
data of our data base may be obtained from the author: Hans.Uhlig@hamburg.de.

See also http:// www.hans-uhlig.de

1 - Economist
2 - Financial Times
3 - Barron's
4 - Far Eastern Economic Review
5 - Asian Wall Street Journal
6 - Finanz & Wirtschaft
7 - Frank Mella: "Dem  Trend auf der Spur".
     Verlag Boersenzeitung, Frankfurt/Main, 1988.
     (calculated DAX values for the time before  July 1988,
     when it was officially recognized as the standard
     stockmarket index for Germany)

For some countries the stock market indices changed over time. In those cases the indices were
concatenated and transformed on the basis of overlapping data. 

We  cannot  exclude typing errors  and/or  missing  data.  So if  you use the data you should be
careful.  Anyway you will  do so at  your own risk.  We  refuse any responsibility  for  them being
correct and/or complete. 
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Here we give two references for the complexity, i.e. number of dimensions of financial markets. 
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9th October 1993. Reprints of this survey can be obtained from THE ECONOMIST  Newspaper
Ltd, 25 St. James Street, London SW1A 1HG, United Kingdom.

Reading of this survey is highly recommended. It  deals with all kinds of financial markets and
reviews a number of recent efforts to improve market predictions.

Paul De Grauwe, Hans Dewachter and Mark Embrechts: Exchange Rate Theory - Chaotic Models
of Foreign Exchange Markets. Blackwell Publishers, Oxford, United Kingdom, 1993.

This book focuses on foreign exchange markets. It provides a good review of econometric market
models, fundamental and chartist methods to predict the market. The methods of chaos theory
and their scientific background are explained. Market dimensions are estimated and two kinds of
market models are developed: a chaotic model and a periodic model with stochastic shocks. 

We have coded these two models into C-programs. Executables and the source code of which
are included on the program disk (Disk # 1) enclosed.

Bärbel Finkenstädt: Nonlinear Dynamics in Economics - A Theoretical and Statistical Approach to
Agricultural Markets. Lecture Notes in Economics and Mathematical Systems Vol. 426, Springer
Verlag Berlin, Heidelberg, 1995.

The book analyses commodity prices and looks for non linear dynamics. The author applied a
simple nearest neighbour method to forecast commodity prices and showed its superiority over
optimal conventional linear statistical methods (ARMA). 

More references could be given of course,  but here we mentioned only those which deal with
financial markets and we tried  to provide examples for different markets.
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